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Abstract: Ocean bottom seismometers have been used by academia for several decades to study mostly the deep
subsurface. But only since recently, such ocean bottom nodes (OBN) have been used in commercial seismic surveys for
oil & gas exploration and development. In the 1990s the first 2D case studies using OBNs were carried out in the North
Sea, and more substantial 2D & 3D pilot surveys followed in the early 2000s in the Gulf of Mexico, the North Sea, and in
West Africa. The first full 3D OBN survey was carried out in 2004/2005 in the southern Gulf of Mexico, and until 2008
only one or maximum two 3D OBN survey per year were acquired world-wide. Since 2008, about 12 OBN surveys have
been acquired world-wide, and demand for 2011 onwards is increasing.

Why are OBNs chosen in favor of towed streamer or ocean bottom cables?

The main driver is the full azimuth information achieved with a typical OBN survey design which enables best
ilumination and imaging in complex structure, for example sub-salt and sub-basalt. Another equally important driver
has been the need to acquire seismic data in congested oilfields: Qilfields can be congested both on the surface,
impeding towed streamer surveys, and on the seafloor, impeding the use of ocean bottom cables. Other forces driving
OBN technology have been the exceptional data quality achieved by this type of acquisition, repeatability of receiver
and source positions, and advances in processing full azimuth seismic data.



Ocean Bottom Node Acquisition — What is it?

OBC Acquisition Node Acquisition

4 component seismic sensor:
3 geophones (XYZ) - also MEMS or optical for OBC
1 hydrophone




Outline
* OBN Acquisition

* Why s it done?

* Equipment and Node Operation
* Roll-along Operation

* Survey Design

e Data Quality
* Node Positioning
* Source Signhature & Sensor Responses, Low Frequency
 Raw Data Analysis

* Direct Arrival — First Break Analysis

(Clock Drift)
(Sensor Orientation)

* Data Processing
 OBN Data Processing Flow
* Mirror Imaging



OBN Acquisition

Why is it done?



OBN Acquisition — Why is it done? Complex imaging with full
azimuth broad band data

o LA e Tt A -
Figure 6. Comparison of narrmv-a:imth fowed streamer (4), and
receiver-migrated OBS node (B). The rode images benefit from an

improved salt model.

Source: Atlantis, Node data acquired by Beaudoin SEG 2010
Fairfield (phase 1) & Seabird (phase 2)



OBN Acquisition — Why is it done? High resolution both
vertically and laterally

Best towed streamer common azimuth wave equation migration P~ !'_
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"| reflections associated
with reservoir sand units

Figure 6: Comparison of extra-salt images at the Miocene level at Atlantis. Higher resolution and improved fault definition are
apparent in the OBS wide-azimuth node image on the bottom compared to the narrow-azimuth towed streamer image above.

Source: Atlantis, Node data acquired by

. ’ Howie et al SEG 2008
Fairfield (phase 1) & Seabird (phase 2)



OBN Acquisition — Why is it done? 4D Repeatability

Comment on first node-on-node 4D survey:

“Time-lapse noise measurements [...] are among
the lowest in BP’s experience even when compared
to permanent installation surveys.”

Reasnor et al, SEG 2010

-
——

SR S:h:d't repeatability

Diff NA/SA-NA/SE [ Diff NA/SA-NB/SA

Node A, Shot A and B Node A and B, Shot A

Source: Dalia, Node data acquired by Seabird E.Ceragioli et al, EAGE 2010



OBN Acquisition — Why is it done? /il under obstructions,
congested oilfields

Tanker
o - Offloading buoy |
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Injection line

lllustration of the main surface and subsea obstructions on the Dalia
field: OBN will be located on the seabed very close to obstructions.




OBN Acquisition — Why is it done? Converted wave imaging

Shown are classic OBC examples

4DDIFF

_——~
1800 - ~ -
Depth(m)  §outh SOUth-WeSt @—— 0 km 1
Source: Alba Source: Grane Fjellanger et al, SEG 2006
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Why Converted Waves? PP & PS = Better anisotropic
velocity model building .. scan

<—— Delta ——>

PP reflection, isotropic NMO correction

Offset/Angle of incidence

PS reflection, isotropic NMO correction

\

\

Note polarity reversal at
critical angle




OBN Acquisition

Equipment and Node Operation



OBN Equipment — Nodes

Option 1

Arrangements of OBS components

Pacdo amenna

Déap se& hydroonhoneg
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Typically glass or titanium sphere

Disposable heavy anchor

Internal or external sensor package
Mostly used for academic research

Throw node overboard, let it float up by itself

EM node



OBN Equipment — Nodes

Option 2 Hand-place node, pick it up manually

Node can be custom shaped

Recorder in cylindrical pressure vessels
Internal or external sensor package
Mostly used for commercial 3D surveys



OBN Equipment — Node

4 component (4C) sensor:

= Hydrophone
= 3 Geophones (8 Hz)
= 2 Inclinometers

Node Unit/recorder:

= Microprocessor

= A/D: 24-bit

= Data Storage: 75 days @ 2 ms
= Clock: High-precision oven-controlled quartz oscillator
= QC data Link: High-speed acoustic modem

= Battery: >65 days
= Physical size: 91 x 87 x38 cm
= Weight: 150/70 kg in air/sea

= Depth rating: 3000m



OBN Equipment — Sensor technology

Geophone sensors Hydrophone sensor

~6.3cm X 1.9cm diameter y

<

* Hydrophones need to be exposed to outside
* Geophones need to couple to seabed (in order to
record shear waves)

* MEMS accelerometers or optical sensors are not suitable for autonomous nodes due
to high power consumption of the sensor itself or of other system components
e Others, such as piezo-electric sensors are also an option



OBN Equipment — Vessel

Seabird Hugin Explorer
OBN-Source-ROV vessel




OBN Equipment — Node Handling




OBN Operation — Node Placement




OBN Operation — Node Placement

Sensor skirt

21/09/2009 22:24:24 10271003-1433 (cutaway view)
E796945 15 N3013099.70
HDG 290.7 RvD 2077 .6

“Added mass”
contribution

Unperturbed from soil

soil




OBN Operation — Node QC

Recorder status
Battery status

Hard disk status
Power usage

Tilt values

Seismic data RMS
amplitudes

...various other system
information

Acoustic modem communication
between OBN and vessel




OBN Acquisition

Roll-along Operation



O/W contact

Node/shot area is







Example sail line
for shooting vessel
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OBN Acquisition

Survey Design



OBN Survey Design

Example OBN survey layout:
Source grid:  50m x 50m

Node grid: 400m x 400m

_ Area of full surface azimuth/
offset coverage




OBN Survey Design

Target horizon, node area.




OBN Survey Design

Xlima
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OBN survey design - Contributing nodes/shots, centre bin OBN survey design - Contributing nodes/shots, comner bin

Shot area

Node area
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locations
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X coordinate [m] X coordinate [m]




OBN survey design - Fold in 800m offset bands, two example CMP bins
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OBN Acquisition

Node Positioning



Node Positioning — Systems

Standard sub-sea positioning systems

e USBL — Ultra Short Baseline

— Vessel based transceiver acoustically interrogates remote beacon to determine a range/bearing
and computes relative position from vessel GPS. Average accuracy is a function of water
depth/slant range.

* INS — Inertial Navigation System

— Comprised of Inertial Measurement Unit (IMU) and software Kalman filter. IMU senses motion
and direction, with Kalman filter, to maintain accuracy away from control points.

e LBL - Long Baseline

— Comprised of an array of N transponder beacons placed at the seafloor which are calibrated in a
relative manner. Unambiguous fix requires at least 3 ranges. Independent of depth.

— Costly and time consuming operation



Node Positioning — Systems

High-fidelity sub-sea positioning system

* HiPAP & SSBL

— High Precision Acoustic Positioning
using Super Short Baseline

— Hull mounted unit & ROV
transducers

* HAIN

— Hydro-acoustic Aided Inertial
Navigation System

— Inertial Measurement Unit (3 gyro
compasses & 3 accelerometers)

— Doppler Velocity Log (ROV speed)
— Pressure & heading sensor

— Kalman software filter

KONGSBERG




—— Sonardyne FUSION

—— Sonardyne analog

—+— HiPAPSI0
HiPaF250

USBL: +/-12m @ 1500m

(~0.8%)
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SSBL + HAIN: +/-1.4m @ 1500m
(~0.1%)




Node placement statistics, 750 nodes, water depth 1095m-1135m. As-laid versus preplot positions

Histogram, as-laid versus preplot positions ===
Mean misplacement (1.2m) ——

Number of nodes

1-2m 2-3m 3-4m 4-5m 5-6m 6-7Tm 7-8m 8-9m  9-10m
Distance [m]

Mode placement statistics, 750 nodes, water depth 1095m-1135m. First break versus preplot positio
400 H H ' H H : H
Histogram, first break versus preplot positions =
350 oo 1 Mean misplacement (1.9m)

300

200

250 - | Post-processing position

Number of nodes

mo ...where we really were
- B

30

0-Im 1-2m 2-3m 3-4m 4-5m 5-6m 6-7m 7-8m 8-9m 9-10m =10m

Distance [m]



Number of nodes

Number of nodes

MNode placement statistics, 1600 nodes, water depth 1160m-1820m. As-laid versus preplot positiong

Histogram, as-laid versus preplot positions ===
Mean misplacement (3.1m)

ntentionally plaéed
from pr;eplot\‘ '

0-1Im 1-2m 2-3m 3-4m  4-5m 5-6m 6-7m 7-8m 8-9m 9-10m =10m
Distance [m]

Node placement statistics, 1600 nodes, water depth 1160m-1820m. First break versus preplot positions|
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OBN Acquisition

Source Signature & Sensor Responses

* What is put into the ground and what is recorded
* How to boost low frequency energy to give broad band seismic



Idealistic wavelet
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Source signature

Time [ms)

Source wavelet, 5220cuin @ 12m —— |

Source signature, 5220 cuin, 12m depth, 8Hz geophone response, anti-alias filter

Amplitude [dB]

80 100 120 140 160 180 200 220 240
Frequency [Hz]
Source signature, 5220cuin @ —




Decay is both
natural and due to
anti-alias filter

Source signature

Frequency [Hz]
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Receiver ghost @ 50m depth
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Amplitude [dB]

Opposite notches
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vertical sensor
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Source Signature Processing

In data processing we will try to compress the recorded seismic wavelet as much as
possible, equivalent to flattening/whitening of the spectrum.

e Care needs to be taken to avoid boosting noise in ghost notches
* De-bubble operator to remove bubble oscillations
* Full source de-signature operator

* Modelled versus data derived source signature wavelet



Typically in OBN surveys...

* Deriving the source wavelet from the recorded data works well

* Modelled and data derived wavelets match well

* The bubble is not modelled so well, so it is preferred to use the
data derived wavelet for source de-signature operator design

Modelled wavelet

Data derived wavelet
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Source Signhature Processing

De-bubble operator

De-bubble operator
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Boosting low frequency energy

Why do we need low frequency information?

* Improved resolution from broad band seismic
* Deep, complex structural imaging, in particular:
— Sub-salt imaging
— Sub-basalt imaging
— Generally, penetrating high velocity layers and rugose interfaces
* Velocity model building
* Inversion



Source signature - Different array sizes

I I
5000 cuin volume:

Frequency [Hz]
Source signature @ 10m, 4370cuin Source signature @ 10m, 5000cuin 4




Source ghost at different depths

12m ghést

Amplitude [dB]

Frequency [Hz]
Source ghost @ 6m Source ghost @ 12m
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Receiver ghost @ 50m
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Source ghost @ 12m, different geophones

Amplitude [dB]

Frequency [Hz]

14Hz geophone

8Hz geophong ——

tude [dB]
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Frequency (Hz)
3

8

Analog

-200 -195 -190 -185 -180 -175
dB relative to 1 (m/s)? Hz"!

spectral density of ambient noise (buried receivers, depth 200m) A notch filter is applied to
analog data

hydrophones ina 7-1nch well at depths rangi

At conﬁrms that below 50 Hz conventlonal 2€0 hones

opposite: The three noise bursts recorded between 2 and 4 o’clock can be observed up to 200
Hz on the digital accelerometers. Another obvious advantage of digital sensors is their total
ity to electrical leakage. This experiment was conducted in a gas storage area close to




Boosting low frequency energy — Summary

Recorded low frequency energy can be boosted by...

1. Using a big source array

2. Towing source array deep

3. Towing streamer deep, or better: Placing sensors at seafloor

4. Using acquisition technique allowing receiver side de-ghosting / wavefield separation

5. Using broad-band sensors that are highly sensitive at both low frequencies and high
frequencies

Ocean bottom node acquisition technique is optimal with respect to all of the above.



OBN Acquisition

Raw Data Analysis



Continuous recorded raw data
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Atlantis Seatrial 2009 - Average spectra Log Scale, all offsets (0-6000m), station 100210021, node 1
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Spectral analysis

Continuous data spectra — 4 minute traces
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Spectral analysis

Continuous data spectra — 4 minute traces
Y Component
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Spectral analysis

Continuous data spectra — 4 minute traces
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Continuous data spectra — 4 minute traces

Spectral analysis Hydrophone

Earthquake/
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Continuous data spectra — 4 minute traces

Spectral analysis
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Spectral analysis — Explaining frequency “ripples”
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Raw data analysis

Example raw receiver gather, deep water (~1km)
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OBN Acquisition

Direct Arrival & First Break Analysis



Direct arrival

Seafloor

Usages for recorded direct arrival wave = Parameters that can be derived
from first break pick times:

1. Node positions

2. Source positions (to limited extent)
3. 3Csensor orientation angles

4. (Average) Water velocity



Direct arrival travel time equation:

Receiver/Node position

Source position

Average water velocity (at best function of depth and time)

Residual time shift

Clock drift (time variant)
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First Break Times — Sensitivity Analysis
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Water velocity

Water velocity profiles taken over the
same area at different times and
locations:

...illustrates that in general, water
velocity is invariant neither in space
nor in time.

TWT [s)down

ST
~ 91T
- SOFT
- 01T
- ST

= 0611

- 00ST

- S0ST

0.4 -

0.6+

0.8+

144

n

l 1500m

Speed of Sound in water from TS dips (nv's)

=
0
[}
1
%
12




Z componesd

Ztemnponent




Direct Arrival Polarisation

The maps to the right show Difference between first break polarisation and source receiver
that... azimuth, plotted at each shot position.

1) Direct arrival is clearly
isotropic and linearly
polarised = very good
vector fidelity of direct
arrival

2) There is very good control
over sensor 3D orientation
(better than 1°)

As-laid sensor orientation Data derived orientation.
Corrections:
Azimuth -0.04°
Tilt X -0.98°
TiltY -0.73°




Direct Arrival Polarisation

Single node, different
survey, similar seabed

depth & conditions:
Polarisation error — average over many OBC sensors:

Unburied OBC Buried OBC

Horizontal plane

Sagittal plane

Olofsson & Massacand EAGE 2007




OBN Acquisition

3C Sensor Orientation



3C Sensor Orientation

Purpose of 3C orientation analysis is to
find the 3 orientation (Euler) angles that
rotate as-laid sensor components to
survey-wide Inline/Crossline/Vertical

Example definition of

orientation angles.

coordi

.......

_—
Crossline
(local)

v

Vertical

nate system.

Inline
(local)

* Roll angle ®
e Tilt angle ©

e Azimuthy

Rotation around local Inline axis

- makes Y component horizontal
Rotation around local Crossline axis
- makes X component horizontal
Rotation around Vertical axis

=2 aligns X component with survey Inline (or North...)

Olofsson et al SEG 2007
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3C Sensor Orientation

OBN sensor orientation Three source lines only:

140

Estimated orientation angles

/—i \ mapped by source-receiver

azimuth and incidence angle
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3C Sensor Orientation

OBN sensor orientation

...in comparison, OBC:

Buried OBC

Unburied OBC

140

=00

-7.0

-14.0

Olofsson et al SEG 2007




OBN Data Processing






OBN Data Processing Flow

SEGY input

l

Noise attenuation/
despike

Hydrophone

Geophone

PZ calibration (Z-to-P)

Source designature/
debubble

Source designature/
debubble

v

Vz noise attenuation

Upgoing Downgoing
up/down decon SRME demultiple
Noise attenuation Noise attenuation
TTI PSDM TTI mirror PSDM

/

Wavefield separation/
PZ combination

Radon demultiple

Radon demultiple

stack

A

y

post-

processing

stack

stack

A 4
post-stack
processing




OBN Data Processing Flow

SEGY input

l

despike

Noise attenuation/

Hydrophone

Geophone

Offset/vector tile regularisation
Anisotropic velocity model building

Offset/vector tile migration

Residual azimuthal velocity analysis

PZ calibration (Z-to-P)

Source designature/
debubble

Source designature/
debubble

v

Vz noise attenuation

/

Wavefield separation/
PZ combination

R

Upgoing Downgoing
up/down decon SRME demultiple
Noise attenuation Noise attenuation
TTI PSDM TTI mirror PSDM
Radon demultiple Radon demultiple

stack stack
A 4 Y
post-stack post-stack

processing processing




¥ coardinate [m]

Mirror imaging

“Conventional” imaging
Primary reflections, up-going wavefield
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“Mirror” imaging
Receiver side multiple, down-going wavefield
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Mirror imaging

Second multiple
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iIrror imaging

M

Example — Raw input data

After PZ calibration, debubble operator,
Vz noise attenuation and PZ

combination.




Summary

Upsides
* Operationally, OBN acquisition is very efficient in presence of
— Surface obstructions (impeding use of towed streamer)
— Seabed obstructions, rugged seafloor (impeding use of ocean bottom cables/OBC)

* QOcean bottom nodes provide an ideal data set
— Full & even surface azimuth/offset distribution
— Low ambient noise environment
— Ideal sensor coupling
— Full waveform recording: P-wave and S-wave arrivals
— Naturally rich in low frequencies, no compromise at high end

Downsides

* Autonomous recording
— Requires elaborate clock drift correction
— Node reliability

e Sparse receivers, limiting shallow illumination
— Can be resolved by multiple (mirror) imaging
— Problematic for converted wave imaging
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